Experimental observation of second-harmonic generation and diffusion inside random media

نویسندگان

  • Sanli Faez
  • P. M. Johnson
  • D. A. Mazurenko
چکیده

We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a highly-scattering slab of porous gallium phosphide. Two complementary techniques for determining the distribution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for several samples at various wavelengths. By combining these measurements with a diffusion model for second-harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of the distribution of the second-harmonic intensity inside the slab. We find that the ratio l2ω/Lc of the mean free path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calculations, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic yield, our experiments show that the scattering parameter at the fundamental frequency k1ωl1ω is the most relevant parameter in our type of samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength and position tuning of erenkov second-harmonic generation in optical superlattice

Related Articles Cascaded erenkov third-harmonic generation in random quadratic media Appl. Phys. Lett. 99, 241109 (2011) Time-resolved femtosecond optical characterization of multi-photon absorption in high-pressure-grown Al0.86Ga0.14N single crystals J. Appl. Phys. 110, 113112 (2011) Experimental observation of optical vortex in self-frequency-doubling generation Appl. Phys. Lett. 99, 241102 ...

متن کامل

Observation of speckle pattern formation in transparent nonlinear random media.

We report on the experimental observation of speckle formation from a transparent crystal formed by a random distribution of nonlinear domains. The angular distribution of second-harmonic light generated by a transparent strontium barium niobate crystal is measured for different diameters of the fundamental beam and crystal thicknesses. Distinct manifestations of speckle pattern formation are f...

متن کامل

Galerkin Finite-Element Method for the Analysis of the Second Harmonic Generation in Wagon Wheel Fibers

The nonlinear effects of the second harmonic generation have been investigated for the propagation of light along the axis of fibers of wagon wheel cross sectional shape. Nodal finite element formulation is utilized to obtain discretized Helmholtz equations under appropriate boundary conditions. The hierarchical p-version nodal elements are used for meshing the cross section of wagon wheel fibe...

متن کامل

Considerably Enhanced Second-Harmonic Generation in Resonant U-Shaped Nano-Structures

In this paper, we perform a detailed study of the spectral response of the gold U-shaped nano-structures for different geometrical parameters and polarizations in order to obtain significant localization factor in the wavelength 1.55 μm. The obtained near-field distribution of electric fields reveals that resonances in these nano-structures correspond to the even and odd plasmonic modes dependi...

متن کامل

Cascaded erenkov third-harmonic generation in random quadratic media

Related Articles Time-resolved femtosecond optical characterization of multi-photon absorption in high-pressure-grown Al0.86Ga0.14N single crystals J. Appl. Phys. 110, 113112 (2011) Experimental observation of optical vortex in self-frequency-doubling generation Appl. Phys. Lett. 99, 241102 (2011) Model for nanosecond laser induced damage in potassium titanyl phosphate crystals Appl. Phys. Lett...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009